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Abstract

A mathematical model is presented to study the role of an applied magnetic field on heat transfer during melting of a

semi-infinite slab swept by a laminar flow of an electrically conducting liquid. The integral forms of the governing

equations were solved by taking into account the sensitivity of the velocity profile to the magnetic field. Numerical

results were obtained for a specified set of characteristic dimensionless numbers, i.e. Reynolds number, Prandtl number,

Stefan numbers and magnetic parameter and their influence on heat transfer and melt generation is reported.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The use of magnetic field that influences melting/

freezing process in electrically conducting fluid flows

has important engineering applications. Some examples

include the magnetic control of convection currents in

semiconductor material processing [1], magnetic control

of molten cast metals [2,3] and liquid metal flow situa-

tions [4]. The present paper is concerned with such a

related problem, viz., the study of the effect of magnetic

field on the laminar, incompressible, weakly electrically

conducting fluid flow over a slab that melts at steady

rate wherein both the flowing liquid and the melting

solid slab are of the same material. A few referred works

of the extensive literature available on the magnetohy-

drodynamic (MHD) and melting heat transfer problems

are stated below.

Earlier studies on MHD problems pertain to the

magnetic field effects on the fluid dynamics and heat

transfer in various geometries. These analytical investi-

gations employed both similarity techniques [5–7] and

approximate integral method [8,9]. Similarly, the prob-

lem of melting heat transfer over a flat plate has been

successfully treated by both similarity [10] and integral

[11] methods in the absence of magnetic field. The pre-

sent study, by means of an integral analysis, deals with

the coupled problem of hydromagnetic flow and melting.

2. Mathematical analysis

2.1. The physical model

Fig. 1 shows the physical model. An electrically

conducting liquid at temperature T1 and under im-

pressed constant non-zero pressure gradient flows with a

constant free-stream velocity U1 over a semi-infinite

slab. This slab initially at T o is subjected to a step-

change in temperature to that of the free-stream and

consequently transient state prevails in the solid. At

steady state flow conditions, the slab surface reaches its

melting temperature T f and melts at a steady rate V F

locally and the melt is swept away continuously by the

flowing warm liquid of the same material. A uniform,

steady magnetic field of strength Bo is imposed perpen-

dicular to the direction of the flow. The direction of

various velocities, the flow near the boundary between

the solid and the liquid and the co-ordinate system fixed

to the interface are shown in Fig. 1. The phase change

occurs at steady-state conditions so that the co-ordinate

system is fixed to the melt interface of the solid [10–12].
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With a two-dimensional flow in the �xx–�yy plane

(V ¼ Uex þ V ey), the application of magnetic field in the

�yy-direction (B ¼ Boey) will result in an induced current

in the z-direction and according to the Ohm�s law, it is
given by J ¼ r ðEþ V� BÞ, which in the absence of

imposed electric field (E ¼ 0) reduces to rUBo. This in-

duced current provides a two-way coupling between the

fluid flow field and the force due to magnetic induction.

The resulting retarding force is referred to as Lorentz or

body force per unit volume and is given by J� B,

which becomes rUB2
o and acts opposite to the positive

�xx-direction.
It should be noted that, throughout the paper, the

�bar� over the symbols indicates dimensional quantities

and upon transformation into corresponding non-

dimensional quantities using suitable scaling factors,

they are expressed without the bar.

2.2. Basic assumptions

The following assumptions are made in this study:

(a) The applied uniform magnetic field of constant

strength is considered to be fixed relative to the slab

Nomenclature

a coefficients in the temperature profile

b coefficients in the velocity profile

B magnetic induction in the liquid

Bo applied magnetic field strength in the �yy-di-
rection

Cp specific heat

D melting parameter

E electric field intensity in the liquid

Ec Eckert number

ex, ey unit vectors in the �xx and �yy-directions re-

spectively

h local heat transfer coefficient

J electric current density in the liquid

k thermal conductivity

L characteristic length scale in the �xx-direction
M latent heat of melting

M magnetic influence parameter

_mm rate of melt generation per unit area

Nu Nusselt number

Pe Peclet number

Pr Prandtl number

Re Reynolds number

Ste Stefan number

T ; T local and normalized temperature

U ;U local and normalized axial components of

velocity

V ; V local and normalized normal components of

velocity

V velocity vector in the liquid flow field

�xx; x local and normalized axial co-ordinate

�yy; y local and normalized normal co-ordinate

Greek symbols

a thermal diffusivity
�dd; d local and normalized boundary layer thickness

D ratio of thermal to momentum boundary

layer thickness

g normalized y––co-ordinate with respect to dt

j ratio of liquid to solid thermal conductivity

k ratio of maximum temperature difference in

the liquid to that in the solid

m kinematic viscosity

x normalized y––co-ordinate with respect to dm

n normalized velocity at the solid-liquid in-

terface

q mass density

r electrical conductivity

Subscripts

f, F liquid phase, melt surface

o conditions in the solid at large distance away

from the solid-liquid interface (�yy ! �1)

1 free stream conditions

m momentum boundary layer

s solid phase

t thermal boundary layer

Superscript

� dimensional quantity

Fig. 1. Schematic diagram.
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and to act normal to the oncoming weakly conduct-

ing liquid.

(b) Both the induced magnetic field and displacement

field are negligible.

(c) Though applied magnetic field will alter the veloci-

ties in the boundary layer, the flow is stable and lam-

inar.

(d) All thermo-physical properties of the liquid/solid are

constant.

(e) In this steady, two-dimensional, stable, incompress-

ible flow, the influence of the melt addition on the

magnetic field is negligible.

2.3. Mathematical formulation

The assumptions stated above permit the formula-

tion of the problem in a manageable form. For brevity,

only the system of non-dimensional form of the equa-

tions is presented. The transformation relations be-

tween the dimensional and non-dimensional quantities

are:

x ¼ �xx
L
; y ¼ �yy

L
; dm ¼

�ddm

L
; dt ¼

�ddt

L
; x ¼ y

dm

;

g ¼ y
dt

; D ¼ dt

dm

; U ¼ U

U1
; V ¼ V

V F

; n ¼ V F

U1
;

T ¼ T � T f

T1 � T f

; Ts ¼
T s � T o

T f � T o

; Pr ¼ mf
af

; Re�xx ¼
U1�xx
mf

;

Re ¼ U1L
mf

; Pe ¼ RePr; Nu�xx ¼
h�xx
kf

; M ¼ rfB2
oL

qfU1
;

Ec ¼ U
2

1
CpfðT1 � T fÞ

; Stef ¼
CpfðT1 � T fÞ

M
;

Stes ¼
CpsðT f � T oÞ

M
; D ¼ Stef

1þ Stes
; j ¼ kf

ks
;

k ¼ ðT1 � T fÞ
ðT f � T oÞ

The continuity, momentum and energy equations in the

liquid region (0 < y61) are:

oU
ox

þ oðV nÞ
oy

¼ 0 ð1Þ

U
oU
ox

þ V n
oU
oy

¼ 1

Re
o2U
oy2

þMð1� UÞ ð2Þ

U
oT
ox

þ V n
oT
oy

¼ 1

Pe
o2U
oy2

þMEcU 2 ð3Þ

Subject to

Uðy ¼ 0Þ ¼ 0; V ðy ¼ 0Þ ¼ 1; T ðy ¼ 0Þ ¼ 0

Uðy ! 1Þ ¼ 1; T ðy ! 1Þ ¼ 1 ð4Þ

In the momentum equation, the second term on the

right-hand side (RHS) includes both the Lorentz force

within the boundary layer and the effect of free-stream

compensating pressure gradient in terms of the free-

stream Lorentz force. Consideration of the inviscid

flow momentum equation establishes the relationship

between the pressure gradient and the free-stream

Lorentz force [13]. The second term on the RHS of the

energy equation represents the Joulean heat generation

due to the induced current in the presence of magnetic

field.

Assuming negligible axial conduction, the heat con-

duction equation in the solid region (�1 < y6 0) of the

melting slab may be written as

d2Ts
dy2

� jk
Stes
Stef

Pen
dTs
dy

¼ 0 ð5Þ

Subject to

Tsðy ¼ 0Þ ¼ 1; Tsðy ! �1Þ ¼ 0 ð6Þ

In the above equation, the surface of the melting slab is

considered to be moving at the steady-state velocity V s

[11,12] as a result of melting at the solid–liquid inter-

face, wherein the rate at which the mass of the liquid

introduced into the main stream, _mm is equal to the rate

at which the amount of solid lost, i.e., qfV FðxÞ ¼
qsV sðxÞ.

The energy balance at the solid–liquid interface

states that the total heat transferred from the warm

flowing liquid is equal to that conducted to the interior

of the solid plus the latent heat supplied at the inter-

face:

kf
oT
o�yy

ð�yy ¼ 0þÞ ¼ M _mmLþ ks
oT s

o�yy
ð�yy ¼ 0�Þ ð7Þ

This in non-dimensional form may be written as

oT
oy

ðy ¼ 0þÞ ¼ Pen
Stef

þ 1

jk
oTs
oy

ðy ¼ 0�Þ ð7aÞ

Now, Eq. (5) together with Eq. (6) may be readily in-

tegrated to yield the temperature distribution within the

solid as

Ts ¼ exp jk
Stes
Stef

Peny
� �

; �1 < y6 0 ð8Þ

This closed-form expression for the temperature distri-

bution within the solid involves an unknown quantity,

viz., the dimensionless interfacial velocity, nðxÞ, which
will be obtained from the analysis of the liquid phase.

Using the above equation in Eq. (7a) reduces the inter-

face condition to

oT
oy

ðy ¼ 0Þ ¼ Pen
ð1þ StesÞ

Stef
¼ Pen

D
ð9Þ

Eqs. (1)–(4) and (9) complete the mathematical formu-

lation of the physical model.
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2.4. Integral analysis approach

As exact solution to the above system is not readily

possible, following the well-known approach of Karman

and Pohlhausen, Eqs. (1)–(3) are integrated over the

respective boundary layers and the resulting integral

forms of the equations are:

V ðx; dmÞ½ � 1
n ¼ �
Z dm

0

oU
ox

dy ð10Þ

d

dx

Z dm

0

Uð1
�

� UÞdy
�
� n

¼ 1

Re
oU
oy

ðy ¼ 0Þ �M
Z dm

0

ð1� UÞdy ð11Þ

d

dx

Z dt

0

Uð1
�

� T Þdy
�
� n

¼ 1

Pe
oT
oy

ðy ¼ 0Þ �MEc
Z dt

0

U 2 dy ð12Þ

The above integro-differential equations are to be

solved by assuming suitable velocity and temperature

profiles. Since the ponderomotive forces are present

within the boundary layer, the chosen velocity has to be

sensitive to changes in these forces and accordingly the

boundary conditions are derived to accommodate the

MHD effects. A third-order dimensionless velocity and

temperature profiles are chosen:

U ¼ b0 þ b1x þ b2x2 þ b3x3 ð13Þ

T ¼ a0 þ a1g þ a2g2 þ a3g3 ð14Þ

The natural and derived boundary conditions in the

velocity and thermal boundary layer respectively are:

Uð0Þ ¼ 0; D
oT
og

ð0Þ oU
ox

ð0Þ ¼ PrD
o2U
ox2

ð0Þ þMPeDd2
m;

Uð1Þ ¼ 1;
oU
ox

ð1Þ ¼ 0 ð15a–dÞ

T ð0Þ ¼ 0;
oT
og

ð0Þ
� �2

¼ 1

D
o2T
og2

ð0Þ;

T ð1Þ ¼ 1;
oT
og

ð1Þ ¼ 0 ð16a–dÞ

The coefficients evaluated by applying the boundary

conditions for U and T respectively are:

b0 ¼ 0; b1 ¼ /ð6þMRed2
mÞ;

b2 ¼ 3� 2b1; b3 ¼ b1 � 2 ð16e–hÞ

a0 ¼ 0; a1 ¼
2

D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3

2
D

r"
� 1

#
;

a2 ¼ 3� a1; a3 ¼ a1 � 2 ð17a–dÞ

where

/ ¼ /ðD; Pr;DÞ ¼ PrD
4PrD þ Da1

ð18Þ

The boundary conditions shown in Eqs. (15b) and

(16b) are obtained from the application of the mo-

mentum and energy equations respectively at the melt-

ing surface and the interface energy equation. Using

the above profiles in the momentum and energy inte-

gral equations and neglecting the term representing the

Joulean heating in the energy equation the following

are obtained:

d

dx

Z dm

0

Uð1
�

� UÞdy
�
� n

¼ b1
Redm

þ Da1
PeDdm

�M
Z dm

0

ð1� UÞdy ð19Þ

d

dx

Z dt

0

Uð1
�

� T Þdy
�
� n ¼ ð1þ DÞa1

PeDdm

ð20Þ

For D6 1, the momentum boundary layer thickness is

larger than that of the thermal boundary layer and is

valid for flows with the Prandtl number, Pr, of the fluid

larger than one (PrP 1). In this case, by evaluating the

integrals in Eqs. (19) and (20) and after rearrangement,

the final form of the momentum and energy equations

respectively are:

d

dx
m1dm



þ m2d

3
m þ m3d

5
m

�
¼ 1

Redm

6/

�
þ Da1
PrD

�
þMdm

2
ð3/ � 1Þ þM2Re/d3

m

12

ð21Þ

where

m1 ¼ m1ðD; Pr;DÞ ¼
9

70
ð/ � 1Þ � 12

35
/2;

m2 ¼ m2ðD;Re; Pr;D;MÞ ¼ MRe/
35

3

4

�
� 4/

�

m3 ¼ m3ðD;Re; Pr;D;MÞ ¼ � 1

105
ðMRe/Þ2 ð22a–cÞ

d

dx
½e1dm þ e2d

3
m
 ¼

ð1þ DÞa1
PeDdm

ð23Þ

where

e1 ¼ e1ðD; Pr;DÞ ¼
6/
D

Z þ 1

5

�
� a1
20

�
D3 � 1

28

�
� 2a1
105

�
D4;

e2 ¼ e2ðD; Pr;D;MÞ ¼ M/Z
D

ð24a;bÞ

Z ¼ ZðD;DÞ

¼ 3

20

�
� a1
30

�
D3 � 2

15

�
� a1
30

�
D4 þ 1

28

�
� a1
105

�
D5

ð25Þ
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The term / in the above equations and in the subsequent

discussions corresponds to Eq. (18).

For D > 1, the momentum boundary layer thick-

ness is less than that of the thermal boundary layer

and is valid for flows with Pr < 1. It may be readily

seen that the resultant integrated momentum Eq. (21)

and it�s associated equation, Eq. (22) also holds good

for this case and hence can be retained. Upon con-

sidering that the influence of the magnetic field is

confined to the momentum boundary layer and noting

that D > 1, it can be seen that the flow field affects

only a part of the temperature field. This calls for

appropriate limits of integration of the energy equa-

tion, Eq. (20). The final form of the energy equation

for this case is

d

dx
e1dm



þ e2d

3
m

�
¼ ð1þ DÞa1

PeDdm

ð26Þ

where

e1 ¼ e1ðD; Pr;DÞ

¼ D
2

�
þ 1

50D2
� 1

14D3
� 1

2

�

þ 6/
1

12

�
� 1

20D2
þ 2

105D3

�
� w1

e2 ¼ e2ðD;Re; Pr;D;MÞ ¼ MRe/
1

12

�
� w2

�
ð27a; bÞ

w1 ¼ w1ðD; Pr;DÞ

¼ D
12

�
þ 1

2D
/
5

�
� 3

20

�

þ 1

D2

2

15

�
� /

5

�
þ 1

D3

2/
35

�
� 1

28

��
a1

w2 ¼ w2ðD;DÞ

¼ 1

30D

�
� 1

30D2
þ 1

105D3

�
a1 þ

1

20D2
� 2

105D3

ð28a; bÞ

For a chosen set of parameters Re, Pr, D, M that

define the problem, above the non-linear ordinary dif-

ferential equations, viz., Eqs. (21) and (23) or (26), are

simultaneously solved numerically by the fourth-order

Runge–Kutta method by integrating along the x-direc-
tion with a step size dx ¼ 10�3. In conjunction with the

integration scheme, the Newton–Raphson iterative tech-

nique is used to solve the resulting non-linear equations

at each discrete location, x by iterating the quantities

dm and D till converging results are obtained for

dmðRe; Pr;D;M ; xÞ and DðRe; Pr;D;M ; xÞ with an accu-

racy of e ¼ 10�4. Subsequently, the following quantities

of interest may be computed:

The melt generation rate is obtained from Eq. (9) and

(14) and using Pe�xx ¼ xPe:

V F

U1

ffiffiffiffiffiffiffi
Pe�xx

p
¼ Da1

Ddm

ffiffiffiffiffi
Pe

p x
1
2 ð29Þ

The local Nusselt number obtained from the rate of heat

transfer at the melting surface and using Eq. (14) is

Nu�xx ¼
x
dt

oT
og

ð0Þ ¼ xa1
Ddm

ð30Þ

Upon taking the ratio of the above case to the corre-

sponding flow over a flat plate in the absence of both

melting and magnetic field is

Nu�xx
Nu�xxo

¼ 3a1
Ddm

Re�0:5Pr�0:33x0:5 ð31Þ

It may be noted when the limiting case of a slug flow

situation is considered, the governing equations become

considerably simpler, yielding closed form solutions

which, however, are not presented here due to space

limitations.

3. Results and discussion

For brevity, only representative numerical results

obtained will be discussed to study the trends. The

present problem, in comparison with the conventional

boundary layer problems, has the magnetic influence

parameter, M and the melting parameters, i.e. the liquid

(Stef ) and solid (Stes) Stefan numbers as the additional

parameters. In addition, there is a non-dimensional in-

terfacial velocity due to melting, nðxÞ, which is unknown

a priori to be evaluated. The range of values chosen for

M to study its effect on the melting heat transfer is

limited to steady and stable laminar flow region referred

to as Hartmann boundary layer flow. For the limiting

case of melting in the absence of magnetic field (M ¼ 0),

the computed results for the thickness of the velocity

and thermal boundary layers, melt generation rate and

heat transfer rate agree with those presented by Griffin

[11]. Fig. 2 shows the influence of M on D and dm at a

Fig. 2. Effect of M on D and dm for different Ste.
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specified location (x ¼ 0:4) for a set of Stef and Stes. As

M increases, D decreases in all the cases. This is due to

increased Lorentz force arising from the interaction of

the fluid flow and the applied magnetic field that coun-

teracts the viscous forces. A higher value of Stef for a

given melting temperature represents a higher value of

the free stream temperature. This requires a longer path

for thermal transport between the fluid stream and

the melting slab resulting in increased D or thermal

boundary layer thickness for higher Stef for a given M .

This variation is consistent with that observed by Griffin

[11] for M ¼ 0.

Fig. 3 shows the axial variation of the interfacial

velocity and the melt generation rate for different set of

values of M , Stef and Stes. It may be seen that the in-

terfacial velocity has a maximum value at the leading

edge of the slab and decreases along the axial direction.

The addition of the melt layer decreases the mean fluid

temperature in the downstream of the slab reducing the

interfacial velocity. At a given location, for a specified

magnetic field, a higher Stef promotes the melting pro-

cess thereby increasing the melt generation rate. The

applied magnetic field though has a marginal effect in

the region near to the leading edge, its influence in-

creases away from the leading edge and has a pro-

nounced effect at higher Stef . Computed results also

show that the melt generation rate decreases as Stes in-
creases for a given set of value of M and Stef as a result

of increased subcooling of the solid requiring larger heat

transport into the solid to bring its surface to the melting

temperature. The effect of M for given Stef and Stes on
the axial variation of thermal boundary layer thickness

and also on the normalized Nusselt number is given in

Fig. 4. It may be seen that when M ¼ 0, D is essentially a

constant along the axial direction as assumed in [11].

When the applied magnetic field is increased, the ther-

mal boundary layer thickness decreases appreciably

which becomes pronounced in the downstream of the

slab. As a result, the temperature gradient at the surface

of the slab increases resulting in higher heat transfer

rates for higher M with greater effects in the downstream

of the slab. For a constant magnetic field, an increase in

Stef thickens the thermal boundary layer resulting in

reduced heat transfer rate. These trends are consistent

with the earlier finding that a combination of higher Stef ,
lower Stes and higher M promotes melt generation.

4. Summary

In the present work, the steady laminar boundary

layer flowpast amelting slab in a transversemagnetic field

is studied. The boundary layer equations with attendant

boundary conditions are analytically solved to study the

influence of magnetic field. The imposed magnetic field

has a greater influence compared with the non-magnetic

case on the velocity boundary layer and promotes heat

flux at the interface. Numerical results show that the ratio

of the thickness of thermal to momentum boundary layer

decreaseswith increase in themagnetic field for the chosen

set of parameters. Also an increase in the local heat flux is

observed in the downstream direction. Increasing the

strength of the magnetic field enhances the melt genera-

tion rate in higher Prandtl number fluids.
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